LogoLogo
Back to OsmosDeveloper DocsOsmos BlogWhat's New
  • Welcome to Osmos
  • 👋Getting Started with Osmos
    • Terminology
  • 🎉What's New
  • 🧩Osmos API Reference
  • ⌨️Osmos Chat
  • 👩‍💻Developer Docs
    • Manage API Keys
    • Embedding an Osmos Uploader
    • Embedding Uploader Jobs Table
    • Turning on Advanced Mode Uploader
    • Customizing Uploader Styling
    • Passing Parameterized Fields
    • Configuring Uploader's "Recall" functionality
    • Optional Uploader Settings
    • Uploader Submission Callback
    • Configuring AutoClean for your Uploader
    • Uploader Client-Side Validation
      • Data Validators
      • Checking for Duplicate values in a field
      • Creating Dropdown-Controlled Fields
      • Dynamic Dropdown Options
      • Dropdown Interaction with Validation Functions
    • Validation and Transformation Webhooks
      • OpenAPI Validation Webhook Testing
    • Parser Webhook for file based connectors
  • 🔠Datasets
    • Osmos Datasets
      • Uploading Data to your Table
      • Creating Primary and Foreign keys
      • Osmos Dataset Destination Connector
      • Osmos Dataset Source Connector
      • Dataset Edits
    • Datasets Query Builder
      • Query Builder Metadata
    • Performing Look Ups
      • Performing Joins
        • Types of Joins
  • ⏏️Uploader
    • Creating an Osmos Uploader
      • Testing your Osmos Uploader
    • Uploader Validation Summary
    • Advanced Mode
      • Overview
      • Process
    • Standard Mode
      • Overview
      • AutoClean
      • Process
    • AI AutoMapping
    • Uploaders Page
    • Uploader Details Page
  • 🔀Pipelines
    • Step 1. Select the Source
    • Step 2. Select a Destination
    • Step 3. Map & Transform Data
    • Step 4. Schedule the Pipeline
    • Step 5. Review & Confirm
    • Pipelines Page
    • Pipeline Details Page
  • ⏩Data Transformations
    • AutoMap
    • Column Mapping & Data Cleanup Panel
    • QuickFixes
    • AI Value Mapping
    • AI AutoClean
    • Lookups
      • Performing Lookups
    • SmartFill
    • Formulas
      • Date & Time Formulas
        • DateTime Format Specifiers
        • Timezone specifiers
      • Math Formulas and Operators
      • Logical Formulas & Operators
        • True & False Casting
      • Text Formulas
      • Other Formulas
    • Deduplication
  • ↘️Source Connectors
    • Amazon S3
    • Azure Blob Storage
    • BigQuery
    • Email
    • FTP
    • Google Cloud Storage (GCS)
    • Google Drive
    • Google Sheets
    • HTTP API (Call an Osmos API)
    • HTTP API (Osmos Calls Your API)
    • Osmos Dataset
    • Snowflake
    • Accessing Sources behind firewall
  • ↖️Destination Connectors
    • Amazon S3
    • BigQuery
    • FTP
    • Google Cloud Storage (GCS)
    • Google Drive
    • Google Sheets
    • HTTP API (Call an Osmos API)
    • HTTP API (Osmos Calls Your API)
      • Passing Dynamic Tokens in the API Header
    • MySQL
    • Osmos Dataset
    • PostgreSQL
    • Snowflake
    • Accessing Destinations behind firewall
  • 🗂️Projects
  • ⚙️Administration
    • Email Notifications
  • 🔒Security
  • 📞Support
  • Back to Osmos.io
Powered by GitBook
On this page

Was this helpful?

  1. Datasets
  2. Performing Look Ups
  3. Performing Joins

Types of Joins

Overview

Osmos Supports four primary join types

  1. A left join helps you merge two sets of data while making sure you don't lose any information from the first set, even if there's no matching data in the second set. It's like adding extra details to a list without losing any names from the original list.

  2. A right join is similar to a left join, but it focuses on keeping all the information from the second set of data (the right one) and adding matching information from the first set (the left one). Again, It's like merging two sets of data while ensuring you don't miss any details from the second set, regardless of whether there's a match in the first set or not.

  3. An inner join is a way to combine two sets of data and only include the information that has a match in both sets. It's like creating a new list where you only keep the items that appear in both of your original lists and anything that doesn't have a match is left out.

  4. A full join, also known as a full outer join, is like merging two sets of data in a way that you keep all the information from both sets. In other words, it combines the data from both sets and includes everything, whether there's a match or not.

PreviousPerforming JoinsNextUploader

Last updated 10 months ago

Was this helpful?

🔠